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A fully automatic method for computing elliptic internal reacting flows is presented. It uses 
a majorant operator-splitting method for the conservation of species equations, which permits 
their usually problematic integration to be performed in a two-step process. For the first 
nonreacting stage the algorithm of Gosman et al. ]lS] is utilised, whilst the form of the 
second reacting stage enables the method of characteristics to be implemented so that a set of 
ordinary differential equations is obtained. The latter are solved using Gear’s [5] method for 
combatting the stiffness that is frequently associated with problems invoiving realistic 
chemical kinetic schemes. Some sample results for turbulent reacting flow in a combustor with 
a conical burner tunnel section demonstrate the viability of the technique. 

1. INTRODUCTION 

The increased use of computational techniques for desi n and feasibility studies of 
combustion chambers has produced the need to develop liable efficient algorithms 
to deal with the complex coupled flow and thermochemistry associated with such 
systems. Typically the flow will be turbulent and recirculating, with simulta~e~~~ 
occurrence of heat and mass transfer. With regard to the description of the ch~rnis~r~ 
involved, one of two approaches is usually opted for, p~ticularl~ when hydroca~~~~ 
combustion is under consideration. Either the totality of the elementary chemical 
mechanism is reduced to a semiempirical global rate expression (see, for example, 
[ 1 J>> or a semiglobal approach is adopted in which the better-known elerne~t~~~ 
reaction steps are retained whilst the unknown or doubtful stages are contacted into 
a single global step [2,3]. 

However, irrespective of the actual method used for dealing with the chemistry, 
presence of chemical source terms generally leads to a numerical difficulty known as 
“stiffness.” This problem is associated with the calculation of local species concen- 
trations in static or dynamic systems and has been discussed extensively in 
literature [4,5]. “Stiffness” is a property that, in the current context, stems prom the 
range of disparate time scales that are related to reactive collision times. In multicom- 
ponent, multireaction systems the smallest characteristic time dictates the ~~~~~~~ 
permissible time step for numerical integration. The latter may be ~ro~~bitive~~ s 
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so that the computation of species concentrations becomes an unviable proposition. 
For static systems, where the rate equations assume the form of a set of ordinary 
differential equations, 

where 12i is the molar concentration of species i, the stiff-equation algorithm of 
Hindmarsh and Gear [6] can. capably handle the above-mentioned difftculty. 

For reacting flow systems the conservation of species equations in their most 
general form are 

p 2 + pvoVmj = V(Dj Vmj> t Rj, j = 1, 2 ,..., N, (2) 

where these N partial differential equations are also coupled to the conservation of 
mass, momentum and energy equations. For turbulent flows there is a further linkage 
to Eq. (2) by equations (possibly differential) that comprise a turbulence model. 
Particular cases of (2) have been dealt with by a number of workers, using a variety 
of techniques to handle “stiffness.” 

Dixon-Lewis et al. [7] proposed a method based upon certain quasi-steady-state 
chemical kinetic assumptions to obtain detailed species and thermal profiles in 
laminar, premixed flames. Their approach is, however, too problem dependent, 
necessitates large computer times, and is therefore unsuitable for extension to 
combustor studies. Smoot et al. [8] also considered the problem of laminar flame 
propagation, for methane-air flames. They treated the “stiffness” problem by 
linearising the chemical source terms (see also Wilde [9]). Their method suffers from 
the need to store and recalculate the Jacobian of the source terms at each step, as 
well as from excessive computer times. 

Operator-splitting techniques [lo] have been tested by Dwyer and Otey [ 1 l] for 
flame propagation problems (parabolic), and by Rizzi and Bailey [ 121 for inviscid, 
reacting flows (hyperbolic). The same sort of approach was adopted by Thomas and 
Wilson [ 131 for calculating the flow in a chemically reacting turbulent jet and by Kee 
and Miller [ 141 for determining the properties \ of an axisymmetric laminar jet 
diffusion flame. The overall performance of these methods is very satisfactory, 
although some large computer times are again reported (for example, [14]). 

For steady-state internal reacting flows, Eqs. (2) assume an elliptic form. Kennedy 
and Scaccia [ 151 solved for laminar reacting flow in a combustor. They dealt 
successfully with stiffness by the following procedure. The chemical rate terms, 
involved in those reactions causing stiffness, are artificially suppressed by raising the 
mass fractions they contain to a power, a, greater than one. The governing nonlinear 
finite-difference equations are solved iteratively and the chemical source terms are 
slowly released by allowing a to tend to one as the number of iterations grows. The 
path which a must follow to attain unity (that is, full chemical reaction represen- 
tation) is completely unknown a priori, so that the approach to this limit must be 
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reached in a rather tedious and time-consuming trial d error fashion. Arbib et ak, 
t 16 ] also utilised this technique for investigating high intensity confined 
flames. 

Spiegler et aE. [17] devised a novel method for tackling “‘stiffness” of elliptic 
equations. They estimate the species concentration field iation during each 
iteration with the help of approximate analytic functions. wever, these may be 
grossly in error for certain times, as evidenced by Fig. 5 of f. [17], where a 25?b 
overestimate is illustrated! Although the technique is attractive in its being automatic, 
much computational effort must be spent at each point in the field in order to 
calculate IocaI equilibrium concentrations, etc. This can be time-consuming, 
particularly if many species are assumed to play a role in the chemical model. 

In the present work an alternative automatic met for dealing with reacting 
turbulent flows of an elliptic nature is discussed. It CQ nes the positive features of 
some of the methods reviewed above. Some sample compute results are given fcr 
turbulent combustion in an industrial furnace with a conical burner tunne!. 

2. EQUATIONS TO BE SOLVED 

The solution of the equations describing an axisymmetric turbulent reacting fiow 
field in a steady state is considered. For such a system, Eqs. (2) and the other 
go~er,~ing equations may be cast into the familiar form [ 181 

-$]b$p! +rd,=*, (31 

where Y and z are the radial and axial coordinates; v is the stream function; and the 
functions ug ) b,, c~, and d, for each dependent variable # are given in Table 1. 

Note that the turbulence model is of the two equation variety with conservation 
equations for k (kinetic energy of turbulence) and k . E, where E is the turbulence 
length scale. The effective dynamic viscosity is computed using [ 191 

,a,, = 0.22 pk”‘1. id) 

The procedure for solving Eqs. (3) involves discretising the system and consequently 
attention is focused on a finite number of grid points covering the whole field. The 
finite-difference equations are then recast as successive substitution formulae of the 
kind, 
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TABLE I 

Equation Parameters 

b a, b, C.9 4 

W 
- 
r 

k 

NC 

wr 

? 

r2 

r k,eff 

kff rz 

rj,eff 

r h,eff 

1 

C,k”‘p + pD,C,l[(ak/3z)’ + (8k/3r)2] 

1 
7 0 

1 -Rj 

1 

Note. C, = 0.416, C, = 1.0, C, = 0.057, D, = 1.0, C, = 1.0. 

where the convection-diffusion operator LEWNS, of the form 

L EWNS(~) =&hT +~whv +44v +A&¶ (6) 

and the source term operator S (derived from the terms d, in (3)) relate the values of 
the variables at a node P to those at adjacent nodes, E, W, N, S (see Fig. 1). Full 
details are reported in the text of Gosman et al. [18]. The formulae are utilised 
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iteratively using the Gauss-Seidel method, with appropriate under-relaxation to aid 
stability by ensuring that exaggerated variations in &, do not occur from one iteration 
to the next. 

With regard to the chemical source terms, it is supposed that P is the ~~rnb~~ of 
elementary and/or global reactions postulated to be occurring, 

where rij and v; are the stoichiometric coefficients of species A, occurring as a 
reactant or a product, respectively, in reaction i. 

Thus, in general, the species production (or depletion) terms are of the f~n~t~~~a~ 
form 

Mj(dnj/dt),h,,,,, = Rj = Rj(m, ,..., mN, T, v v 13, ~J,***Y vFj9 v;j,***3 PJ VL.) (j= 1, Z,...,N). (8) 

It is precisely these terms that give rise to the problem of “stiffness,” which, in the 
iterative solution using (5), exhibits itself in the form of excessively high 
temperatures, and mass fractions that are greater than one or negative. The su 
quent disruptive influence upon the other coupled flow variables is inevitable. 

3. PROCEDURE FOR HANDLING STIFFNESS 

Tbe numerical method suggested here for dealing effectively with sti iS 
conceptually a split-operator technique (a full theoretical treatment of such dS 

can be found in the text of Yanenko [lo]). Essentially, the finite-difference operator, 
replacing the differentials, is split in a way that implies that only certain terms oft 
original differential equation are represented for a fraction of a step, whilst t 
remaining terms make their contribution in order to complete the step. This 
is sometimes referred to as the majorant method. It is (~umer~~a~ly) consistent only 
after a whole step is made, but not at the intermediate stage. 

In the current context, the conservation of species equations are split into a 6 
mechanical” part and a “chemical reaction” part in the following way (here, fo 
sake of clarity, the differential equations have been split, although formally it is their 
finite-difference counterparts that receive this treatment): 
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Furthermore, rearrangement of (lo), accompanied by use of the definition of the 
stream function and the continuity equation, enables it to be rewritten as 

(11) 

Using characteristics theory this partial differential equation may be transformed 
into a simple ordinary differential equation 

dmj = Rjlp, dt 

Now the finite-difference solution of (9) represents the first fraction of a step, whilst 
the solution of (12) completes the step. In physical terms one may interpret this two- 
stage process as follows. Consider an elementary finite-difference cell, such as that in 
Fig. 1. In the first stage of the splitting fluid is permitted to convect and diffuse into 
and out of the cell. At the second stage the cell behaves like a static reactor whose 
current chemical contents react with one another according to (7). (Note that the 
method proposed by Spiegler et al. [ 171 attacks the stiffness problem solely from this 
physical viewpoint. Actually, their technique can be envisaged as a sort of majorant 
method in disguise.) 

The advantage of recasting the second stage into an ordinary differential equation, 
Eq. (12), is apparent. The wide range of typical time scales (associated with the 
source term) which cause stiffness now appear only in this equation. Solution of stiff 
ordinary differential equations can be carried out numerically with ease, using the 
(now standard) technique of Gear [5]. 

rt 

NW N NE 

FIG. 1. Elementary finite-difference cell. 
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Both the physical and formal descriptions of splitting dictate the following tw~-s~~~ 
calculation procedure for the mass fractions of all reactive species: 

(i) Determine the mass fraction of species j that will accumulate in a cell, 
surrounding point P, through convection and diffusion only; i.e., 

(ii) Using mj*, calculate the mass fraction produced in the ‘~re~c~~~~’ 
surrounding P, by chemical reaction proceeding for a typical residence time, 

mj,p = mTp + CT aj/p d t .  

JO 

Step (i) is carried out in the regular successive substitution manner. For step (ii) 
the set of iV ordinary differential equations (12) must be solved s~mu~taneou~~~~ If 
problem of stiffness exists, these are integrated numerically with respect to time us 
the algorithm of Hindmarsh [6] for stiff ODES. The typical residence time, r, is ba 
upon the cell’s dimensions and the fluid velocity at the point P in the fo~~ow~~g way. 

It is, first of all, noted that stage (ii) represents integration along a c~~act~~~st~e 
line defined by 

dr/dz = v/u (45) 

The length of this line from the point P to its intersection with the boundary of the 
cell surrounding P is given by 

p=Zp-T-7. (16) 

(assuming that the velocity is locally constant). Now, referring to 
considering the quadrant (P, II, ne, e) only, it can be deduced that 

p= $ @T7 
i i 

if tan-” 

TZZ-.---.- 
I I 

“,’ j/V iftan-’ 1 +l>tan-’ I$/ ) 

where Ar and AZ are the lengths of Pn and Pe, respectively. ence, cornbi~~~~ (16) 
and (17), the upper limit of the integral in (14b) is found to be 

The mass fractions obtained in the above manner are precise (to within the ~cc~~r~cy 
of the algorithm) in relation to conditions currently prevailing at a given iterative in 
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the elementary cell. Thus, irrespective of the particular initial chemical contents of the 
cell at the beginning of an iteration, the solution of (12) will always yield physically 
meaningful values for the mass fractions since no timewise solution can permit 
otherwise. This is due to the correct integration that is carried out for the time period 
corresponding to one iteration. There is no need to waste computational effort on 
local chemical equilibrium calculations (see [ 171) since if this state is to be attained 
within a “reactor” the integration automatically drives the concentrations to their 
equilibrium values. In addition, the versatility of the solution procedure for the 
complete set of dependent variables is enhanced, since examination of different 
combustible mixtures simply entails supplying appropriate thermochemical data for 
all species present, together with a single new subroutine containing the chemical 
kinetics described by (7). 

An apparent disadvantage of the above-described approach is the large number of 
ordinary differential equations that must be integrated. If the physical domain is 
covered with a mesh of NX x NY internal points, then the total number of equations 
is N * NX * NY per iteration. In order to reduce this work load, the species concen- 
tration equations can be solved at preselected mesh points only. Values of mass 
fractions at the remaining points can then be supplied by interpolation. (In the results 
to be presented Lagrangian interpolation was used, although this may be impoved.) It 
was found that this line of attack significantly reduced the computer time without 
jeopardizing the convergence to a final solution (see also Section 4). 

The major advantage of the approach is that, in contrast to other methods, it 
renders the entire solution procedure for internal reacting flows automatic, without 
any necessity for programmer-computer interaction at intermediate stages of the 
calculation. Experience has also shown that the converged solution is attained in a 
relatively small number of iterations. 

4. BOUNDARY CONDITIONS AND INITIAL GUESSES 

The ellipticity of the governing differential equations dictates the need to specify 
boundary conditions at all points surrounding the flowfield. 

With particular reference to the combustion chamber for which results will be 
presented (see Fig. 2): at the inlet the axial velocity was specified according to the 
one-seventh law for fully developed turbulent pipe flow. The radial velocity was zero, 
whilst the tangential velocity was either zero or assumed uniform in such a way as to 
produce a specified swirl number, 

- - 
SN = J,/J,i?; Jm = 

s 
R pr2uwdr; J, = 

s 
R pru2dr. (19) 

0 0 

The inlet stream function and vorticity were computed from the axial velocity profile. 
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Z-AXIS(M) 

FIG. 2. The combustion chamber and finite-difference mesh. 

The distributions of k and I were taken to be those pertaining to turbulent flow in 
pipes : 

l/R = 0.14 - O.O8(r/E9’ - 0.06(r/R)4, 

k = (0.049 Uma.J2[ 1 C 4(~/l79~]e 

Temperature and concentration distributions at the inlet were uniform. 
Along the centerline the radial gradients of all dependent variables are zero, exce 

for the stream function, which itself is given the value zero there. 
8n the combustor’s walls the velocity vanishes so that w  assumes an ap~ro~~~at~ 

constant value. Due to the very steep gradients of iw/r, k and k in the vicinity of the 
wall a special procedure is required in order to obtain reasonable accuracy in that 
region without necessitating the use of many extra meshpoints. A technique was 
adopted in which the elliptic field is matched with an analytically described bo~~~ar~ 
layer close to the wall. Full details are given by Arbib et al. 1161. The cornb~st~~ 
wall is supposed to be adiabatic and impermeable to mass fluxes, so that concen- 
tration and temperature gradients normal to the wall are zero. A second order finite 
difference approximation for the gradient of the mass fractions is desirable (see [ 161) 
with the mesh being arranged so that the points rtw, n, ne (see Fig. I) lie on the wall. 

Finally, at the exit plane the axial gradients of all the dependent variables were 
assumed to vanish. 

To overcome the problem of the sensitivity of convergence to the initial fie: 
distributions the following procedure was found to be effective. The vorticit 
were assigned a constant nonzero value (taken from the inlet) tbro~ghout 
field. Any intermediate reaction products were likewise designate 
value everywhere (of the order of 10P3-10P4). The stream fu 
velocity were distributed linearly with respect to normalised distances. Si 
temperature, reactants and products were spread linearly between their unburnt 
(calculated) burnt adiabatic flame values. 

It seems to be advisable to initially obtain a cold, ~~n~eacti~g flow so~~t~~~, 
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assuming constant density. The chemistry is then “turned on” so that simultaneous 
iteration on all the variables is performed, until convergence is attained. Following 
these guidelines has proved, so far, to be failsafe. However, the question as to whether 
this is the optimum that can be done in terms of convergence rates remains open for 
such strongly nonlinear problems. 

Finally, a comment on the use of interpolation to calculate the species concen- 
trations at preselected meshpoints is in place. (It will be remembered that this 
procedure reduces the large number of ordinary differential equations that must be 
integrated at each iteration.) The worst errors are likely to be incurred in regions 
(usually the reaction zone) where the actual local behaviour of the species least 
complies with the interpolating polynomial. However, the converged solutions thus 
obtained provide an excellent initial “guess” for a further short round of iterations in 
which the species conservation equations are evaluated at all mesh points, with no 
interpolation. This approach is particularly recommended if the chemistry is modelled 
using a detailed elementary reaction mechanism involving small uncertainties in the 
rate constants. For global or semiglobal kinetic modelling such uncertainties are large 
and, as a consequence, only general qualitative characteristics of the reacting flow 
can be of interest. In such instances, the final round of integration of the ordinary 
differential equations at all mesh points is probably unnecessary. Numerical 
experience has shown that, although the “smearing” induced by (here, 4 point 
Lagrangian) interpolation can lead, at the worst, to errors of up to 40% in the mass 
fractions (relative to those computed using integration), the overall quantitative 
picture was not affected. 

5. CALCULATED RESULTS 

The fully automatic computational procedure was used to examine the influence of 
geometric factors upon a variety of furnace tunnel burners. A detailed discussion of 
this study is given elsewhere [20]. Here some sample results are presented to 
illustrate the viability of the numerical technique. 

The chemical kinetic scheme that was utilized is based upon the semiglobal 
approach and considers the burning of a premixed gasoil-air mixture as occurring 
according to a three-step model: 

C,,H3, ++O,- 15CO + 15H,, (22) 

1 
co+,o,+co,, (23) 

1 
HZ+-OZtHzO. 

2 
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A similar model has been adopted by Arbib et aE, [16] for kerosene- 
combustion. The semiempirical rate expressions for these three steps are: 

--$ [C,,H,,] = 1.2 X lo6 exp (-+$- 

- $ [CO] = 1.3 x 1014 exp (-T 

The hydrocarbon attack rate, (25), is a modified version of that given by Schefer an 
Sawyer [21] for the oxidation of C,H,. Expression (26) was cull 
al. [22j, while the work of Fenimore and Jones [23j is the sourc 

The combustion chamber consists of a small burner tunnel 
large furnace section, Fig. 2. The finite-difference mesh is cons 
good resolution in the tunnel section where the flame is anticip 
combustor’s walls are adiabatic and impervious to mass tran 
fuel/air mixture is in stoichiometric proportions; it enters the burner at 298 
velocity of 10 m/set. 

The integration domain was covered with a mesh of 20 x 17 internal 
ample contours for a typical conical burner tunnel section of semiangle 11.6 
re shown in Figs. 3, 4 and 5, where the temperature, oxygen and carbon m 

distributions are exhibited. The flame zone is clearly delineated by the t~rn~er~t~r~ 
contours. The carbon monoxide profile along the centerline behaves 
attaining a maximum when reactions (22) and (23) are equally competing, a 
quently falling off as the combustion products tend to their equilibrium val 
the fuel/oxygen ratio is stoichiometric the oxygen is almost corn etely consumed by 
the time the furnace is reached. 

In Fig. 6 the streamlines are plotted for the flow. Note the region of re~~r~~lati~~ 
in the conical section. For Fig. 7 swirl has been included, the swirl number 
unity. The effect of swirl is pronounced-it produces a large recirculating 
along the axis that sweeps back burnt gas products to cause more rapid h 
the tunnel. The consequent distortion of the flame is illustrated in Fig. 
corresponding temperature profiles are presented (see also 1241). 

Tbe converged solutions for all the dependent variables were obtained in about 
1500 iterations (a relative error of 10S4 was demanded), with a total time of about 
1; hr CPU time on an IBM 370/168 computer- a time that is not unreasonable for a 
detailed calculated such as this. 
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Z-AXIS(m) 

3. Temperature distribution (K); contour increments, AT= 300 K. 

0.4 - 

0.2 - 2.18.d 

I 
0 0.5 1.0 1.5 

Z-AXIS(m) 

FIG. 4. Oxygen mass fraction distribution; contour increments, Am, * = 2.18 x lo-*. 

0 0.5 1.0 1.5 

Z-AXIS (m) 

FIG. 5. Carbon monoxide mass fraction distribution; contour increments, Am,, = 5 x IO-“. 

-z 0.6- p3-43x10-2 

!!? 0.4- 

0 0.5 1.0 1.5 

Z-AXIS(m) 

FIG. 6. Stream function contours; no swirl; contour increment, Ay = 5 X 10e3 kg/set. 

0 0.5 1.0 1.5 

FIG. I. Stream function contours; swirl number 1, contour increments, Aw = 5 X lo-’ kg/set. 

Z-AXIS(m) 
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Y  j  
; 0.61 

x < O.LC 

: 021 
- 7.100 
, f300 I 

0 0.5 1.0 15 

Z-AXIS(m) 

FIG. 8. Temperature distribution (K); contour increments; AT= 300 K, swirl no. 1. 

5. CONCLUSIONS 

An improved method for calculating elliptic internal reacting flows has been 
presented. It makes use of an operator-splitting technique and Gear’s [5] method for 
integrating stiff ordinary differential equations. It is fully automatic, versatile and 
efficient and, hence, may be readily incorporated into design and feasibility studies of 
combustion chambers. 

APPENDIX: NOMENCLATURE 

coefficients defined in Table I 
coefficients in Eq. (6) 
diffusion coefficient of species i 
total enthalpy 
defined in Eq. (19) 
turbulent kinetic energy 
turbulence length scale 
finite-difference operator 
mass fraction of species i 
molecular weight of species i 
moles/cm3 of species i 
number of species 
pressure 
number of reactions 
universal gas constant 
combustor inlet radius 
source term of species j 
radial coordinate 
source term operator 
swirl number 
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t 

T 
v = (24, 21, w) 
Z 

r eff 

Aj 
Vij, V:j 

oh, oj 

w 

P 
Peff 
z 

0 

Ar, AZ 
P 

time 
temperature 
velocity 
axial coordinate 
diffusion-type coeffkients 
species j 
stoichiometric constants 
Prandtl and Schmidt numbers 
stream function 
density 
effective viscosity 
residue time 
vorticity 
increments of r and z, respectively 
characteristic line length 
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